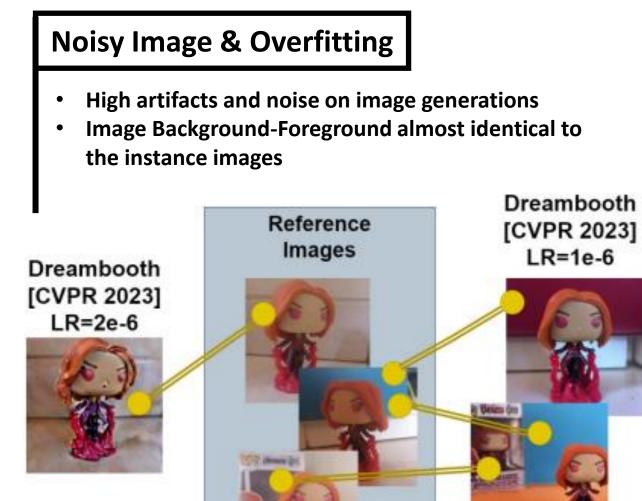
HYPNOS : Highly Precise foreground-focused diffusion finetuning for inanimate objects

Oliverio Theophilus Nathanael¹, Jonathan Samuel Lumentut¹, Nicholas Hans Muliawan¹, Edbert Valencio Angky¹, Felix Indra Kurniadi³, Alfi Yusrotis Zakiyyah², Jeklin Harefa¹

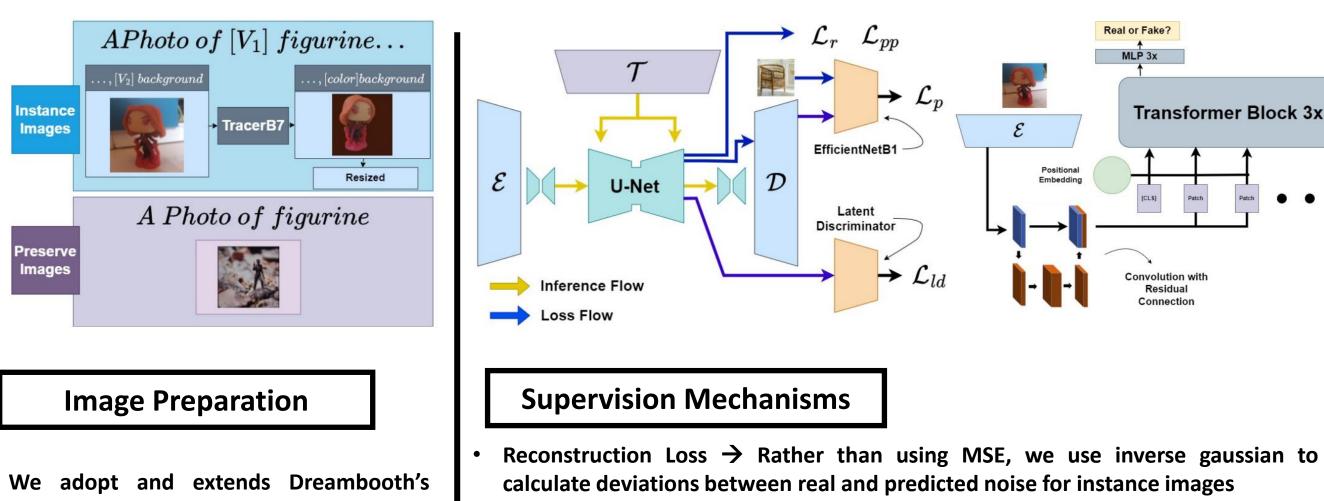
¹Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta 11480, Indonesia ²Mathematics Department, School of Computer Science, Bina Nusantara University, Jakarta 11480, Indonesia ³Università di Pisa, Pisa 56126, Italy

This research project is supported by the grant of Penelitian Pemula Binus No: 069A/VRRTT/2023 (Universitas Bina Nusantara).

Introduction



Proposed Method



• Prior Preservation Loss \rightarrow Standard Diffusion MSE loss between the real and

Foreground-Background Entanglement

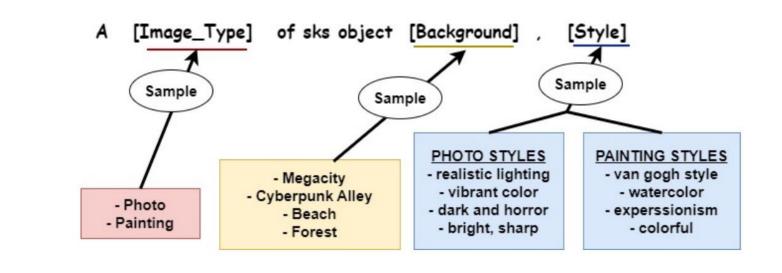
- Background information also learned by the model
- Manipulation towards foreground also applied to the background and vice versa
- Decreasing learning rate decrease both foreground and background alignment towards the prompt and object

Motivation

- Create reliable inanimate object image generation
- Mimic product photoshoot by utilizing Diffusion Model on both foreground and background. This approach enable broader flexibility compare to just background inpainting
- Promote lightweight fine-tuning technique so that the method is more accessible to a wider range of user.

- training image preparation scheme
 - Create variations of provided instance image by changing background color to add variations while retaining lightweightness
- Provide more explicit prompting by separating foreground and background on different clause
- predicted noise for preservation images
- Perceptual Loss → Utilizing EfficientNetB1 to calculate perceptual image, this loss only applied to certain amount of steps to prevent overfitting
- Latent Discriminator Loss → We introduce a light transformer based discriminator to discriminate straight on the latent space. This latent discriminator is pre-trained with modified image such as negative color, removed background/foreground. This is done to produce a foreground-focused model

Proposed Evaluation



- To enable evaluation across different prompts, we propose a novel evaluation mechanism that sample prompt from a pre-defined prompt template. This prompt then can be applied to the existing metrics such as DINO, CLIP-T, CLIP-I, FID, LPIPS, SSIM, and PSNR.
- The prompt part consist of Image type, background information, and style information
- This approach is intended to be used as a complementary insight towards the existing methods

Qualitative Result

Quantitative Result

Invariont Prompt Evaluation

Table 1: *Prompt Invariant* quantitavie metrics evaluated on 3 datasets, Funko figurine (\bullet) , Rattan chair (\bullet) , and Lego Robot (\bullet) .

Method	DINO	CLIP-I	CLIP-T	FID	SSIM	PSNR	LPIPS
Hypnos (Ours)	0.7851	0.8635	0.0094	3,6032	0.5974	11.8504	0.3850
	ho 0.6502	0.8015	0.0067	2.3840	0.2225	9.4634	0.4166
	• 0.6589	0.8369	0.0183	5.6330	0.3876	10.5387	0.4624
Dreambooth	• 0.6422	0.7935	0.0183	2.9873	0.6056	12.2883	0.3663
(LR=1e-6)	• 0.5012	0.7404	0.0549	13.1933	0.1645	9.0604	0.4583
	• 0.7130	0.8753	0.0458	5.7367	0.3429	9.3005	0.4679
Dreambooth	• 0.5311	0.7468	0.0153	14.7671	0.4781	11.4756	0.4513
(LR=2e-6)	\bullet 0.2647	0.4742	0.0224	42.7634	0.1433	9.3789	0.5128
	0.5704	0.8323	0.0175	14.2261	0.3060	9.3813	0.4622

Fig. 5: Image generation comparison, red prompt denotes *prompt invariant*, yellow prompt denotes *prompt varying*, green prompt denotes specific prompting to analyze foreground-background disentanglement ability and highlight semantic leaking

Conclusion

• Foreground-Background Disentanglement

We show an effective approach to enable disentanglement between foreground and background. It is now possible to reliably control scene without subject degradation

Clean Image

Our proposed method capable of creating noiseless image and providing more flexible semantic control through the new hyperparameters

Insightful Evaluation

Varying prompt evaluation opens a new insight along with the existing evaluation methods

References

- Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K.: Dreambooth: Fine tuning text-toimage diffusion models for subject-driven generation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 22500–22510 (2023)
- Gal, R., Alaluf, Y., Atzmon, Y., Patashnik, O., Bermano, A.H., Chechik, G., Cohen-Or, D.: An image is worth one word: Personalizing text-to-image generation using textual inversion. arXiv preprint arXiv:2208.01618 (2022)

Textual	\bullet 0.4934	0.6469	0.0417	12.2159	0.4565	9.9478	0.4917
Inversion	$\bullet 0.4397$	0.7134	0.0308	4.6512	0.2125	8.8142	0.4785
	• 0.3904	0.6118	0.0312	6.4942	0.3929	9.6875	0.5160

Varying Prompt Evaluation

Table 2: *Prompt Varying* quantitavie metrics evaluated on 3 datasets, Funko figurine (\bullet), Rattan chair (\bullet), and Lego Robot (\bullet).

Method	DINO	CLIP-I	CLIP-T	FID	SSIM	PSNR	LPIPS
Hypnos (Ours)	• 0.7070	0.7883	0.0200	11.0675	0.5139	10.9563	0.4626
	ho 0.5461	0.6572	0.0326	8.6402	0.1797	8.8435	0.5039
	• 0.4920	0.6462	0.0242	22.5143	0.2863	9.7863	0.5392
Dreambooth	• 0.7050	0.7837	0.0224	6.5111	0.5453	10.7109	0.4402
(LR=1e-6)	\bullet 0.4499	0.5814	0.0173	11.2734	0.1687	8.1098	0.5196
	• 0.4377	0.6685	0.0286	14.6446	0.2887	9.1872	0.5502
Dreambooth	• 0.6630	0.8028	0.0204	5.1134	0.5589	11.6786	0.4089
(LR=2e-6)	ho 0.4656	0.6424	0.0179	17.1525	0.1650	9.1083	0.4583
	0.5826	0.7704	0.0336	10.4226	0.3325	9.7451	0.4830
Textual	• 0.3131	0.4355	0.0297	42.3451	0.3066	8.9635	0.5942
Inversion	• 0.3242	0.5427	0.0224	18.9589	0.1273	7.8409	0.5455
	• 0.3132	0.5051	0.0239	25.5648	0.2397	8.6579	0.5935

We view quantitative metrics as a supplementary insight rather than an absolute measure of the model overall quality. In some cases lower score is expected, for instance varying prompt often overfitted image scores higher than images that able to align better to the given prompt.